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ABSTRACT 
Agents in a multi-agent system do not act in a vacuum. The 
outcome of their efforts depends on the environment in which 
they seek to act, and in particular on the efforts of other agents 
with whom they share the environment. We review previous 
efforts to address this problem, including active environments, 
concurrency modeling, recursive reasoning, and stochastic 
processes. Then we propose an approach that combines active 
environments and stochastic processes while addressing their 
limitations: a swarming agent simulation (which maintains 
transition probabilities dynamically, avoiding the static 
assumptions most convenient with traditional Markov models), 
applied concurrently to multiple perspectives (thus partitioning 
the active environment and addressing its scalability challenges). 
We demonstrate this method on a simple example. 

Categories and Subject Descriptors 
I.2.11 [Computing Methodologies]: Distributed Artificial 
Intelligence – multiagent systems.  

General Terms 
Algorithms, Design, Experimentation, Theory 

Keywords 
Modeling, polyagents, biomimetic systems, agent interaction, 
prediction, agent environments, swarming 

1. INTRODUCTION 
“Ah, but a man's reach should exceed his grasp, or what's a 

heaven for?”—Robert Browning, 

Browning’s aphorism captures a notorious problem of agent-
based planning. Most plans consist of multiple steps, and later 
steps often depend on the successful execution of earlier ones 
(“precursors”). Planning the execution of a precursor, or even 
attempting to execute it, does not guarantee that it will be 
accomplished. Agents are not omnipotent over their environment. 
Sometimes they are frustrated by the actions of other agents with 
whom they share the environment. In other cases, the environment 
has its own distributed dynamics (e.g., weather). Every agent 
action is only an attempt, whose success (along with the success 
of later steps that depend on that action) is contingent. 

When other agents make the environment dynamic, the situation 
becomes more complicated. Those agents are also attempting to 

act, and their actions are just as contingent as the actions of the 
initial agent. Each agent’s success at any given action depends on 
the success or failure of the other agents, which in turn depend on 
its success or failure, and so forth.  

Reasoning explicitly about this recursive feedback is 
computationally prohibitive in many realistic domains, and may 
not converge. The most straightforward application of statistical 
models such as Markov processes make unrealistic assumptions 
about the shape and stationarity of the underlying distributions. 
Our approach is statistical, but maintains its distributions 
dynamically by means of coupled agent-based simulations. Most 
multi-agent models explore only one trajectory per run, and so 
cannot efficiently generate distributions to guide estimates of 
action success. A swarming approach avoids this problem. 

Agent activity can often be viewed from multiple perspectives, 
such as the structure of the tasks that the agent is trying to 
execute, the agent’s social environment, and actions in the 
physical world. Some of these perspectives are essentially private, 
but may be constrained by public perspectives. The technology we 
outline in this paper allows us to partition the modeling by 
perspective (thus simplifying the modeling problem) while 
providing sufficient information flow among the perspectives to 
resolve shared constraints. 

Section 2 points to related literature on the problem of action in a 
multi-agent world. Section 3 summarizes our statistically-oriented 
agent-based modeling technology. Section 4 illustrates the 
approach with results from a concrete example. Section 5 
discusses the relation of multi-perspective modeling to other ways 
of reasoning about action uncertainty. 

2. REASONING ABOUT ACTION 
UNCERTAINTY 
The problem of the uncertain outcome of an agent’s actions has 
been articulated by a number of authors [4, 11], and several 
solutions have been proposed.  

The most detailed analysis [11] recommends that simulation 
architectures include an active environment. The simulation 
cycle consists of alternating decisions by the population of agents 
(who post their desired actions to the environment) and resolution 
by the environment (which decides which actions succeed). This 
approach addresses the problem, but at the expense of 
programming a dynamically omniscient environment that 
becomes more and more complex as the size and semantic 
richness of a problem grows. 

Formalisms such as CSP [7] and the Pi calculus [12] seek to 
model the concurrent aspect of multiple agent actions. An 
example of applying this approach in the early tradition of 
software agents [3] develops Recursive Petri Nets (RPN’s) to 
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account for concurrent actions of multiple agents. By deferring the 
refinement of an abstract transition until execution, RPN’s allow 
agents to take into account the current circumstances in their 
choices. This formalism encourages interleaving of planning and 
execution (which in our view is good), but explicitly avoids the 
question of how to choose a refinement, and thus sidesteps issues 
of goal conflict among agents. It also does not identify actions that 
are so invariant under execution context that they can be modeled 
as abstract transitions whose place in the overall net structure will 
not be affected by differing outcomes of atomic actions. More 
generally, abstract concurrent modeling languages abstract away 
from details of agent decision processes and domain semantics 
that are important in modeling real-world situations. 

Some researchers let each agent reason recursively about likely 
acts of other agents. Gmytrasiewicz [6] develops an elaborate 
game-theoretic formalism, and argues that the recursion will 
inevitably terminate due to lack of information. Łatek [9] lets 
agents incrementally increase the depth of recursive reasoning 
while monitoring the payoff they experience to find the number of 
levels that are actually useful. Recursive reasoning accounts for 
agents’ intentionality, but does not account for outcomes that are 
not rationally driven (such as those of nature).  

One can model the response of the environment (including other 
agents) as stochastic, subsuming all intentionality in probability 
distributions over alternative actions. (Gmytrasiewicz’s Sub-
Intentional Model allows this case for non-intentional agents such 
as laws of nature, and as a way to terminate recursion.) Decision 
tree analysis [19] is perhaps the simplest application of this 
approach. The nodes in the tree alternate between choices by the 
agent and responses of the environment. A probability is assigned 
to each environmental response, utilities are associated with the 
outcomes, and by propagating the utilities through the intervening 
probabilities, a value can be placed on each choice open to the 
agent. Another formalism for modeling dynamical systems 
involving uncertainty is the Markov process, which associates a 
probability of success pa,s with each action. At each step, the 
system decides with this probability whether the action succeeds 
or not. This approach is computationally attractive. For example, 
it is tractable, and it permits studying the convergence of a series 
of repeated actions by matrix products over the transition 
probabilities. However, it has several disadvantages.  

1. Its purely numerical nature discards any insight that might be 
available from examining agent intentions. 

2. Determining the probabilities in a stochastic model of a large 
real-world scenario is a daunting task.  

3. These probabilities in general do not conform to any 
particular distribution (making sampling them difficult), and 
they are likely to be nonstationary, greatly complicating the 
analysis. 

To make this last observation more concrete, consider a scenario 
in which a single agent seeks to move from one point to another in 
the face of a team of opposing agents. For a given strength of the 
opposition, what will the distribution of arrival times look like 
across multiple replications of the scenario? Intuitively (and 
confirmed by experiment), 

• If the opposition is weak, the arrival time distribution will be 
unimodal, around a value that marginalizes over stochastic 
variations in the travel time experienced in different 
replications of the scenario. 

• If the opposition is very strong, the distribution will again be 
unimodal and in fact univalued at infinity. No replication will 
yield a successful arrival. 

• At intermediate values, some replications will succeed and 
some will fail, yielding a bimodal distribution. One mode, at 
infinity, will represent trials that did not succeed. The other 
will reflect arrival times for trials that did succeed. The 
location of the success mode and the relative size of the two 
modes will depend on the degree of opposition. 

In such a situation, none of the previous approaches suffices. The 
complexity of a single active environment does not scale to large 
problems. Mere analysis of concurrency cannot capture the 
adversarial relation between the players. There is no natural 
termination to the recursion in the recursive rationality approach, 
and the non-stationary, non-canonical form of the underlying 
statistics frustrates the standard forms of statistical analysis. 

We use multiple agents to represent each domain entity, an 
approach that has been called a “polyagent” [17] and that has 
parallels in other systems [18]. Each agent (a “ghost”) explores a 
(possibly distinct) possible future for its entity. Ghosts record their 
movement through the environment by depositing a digital analog 
of insect pheromones, and interact with the ghosts of other 
entities, not directly, but by sampling the pheromone fields that 
they generate. These fields are, up to a normalizing constant, 
probability fields over the alternative futures explored by the 
ghosts [15]. The field for a single entity reflects all the possible 
futures explored by its ghosts, and when a ghost of another entity 
modulates its behavior based on that field, it is sampling over 
those futures. Thus the total number of system futures explored by 
a polyagent system with g ghosts for each of e entities is on the 
order of ge, far larger than can be explored with single-trajectory 
simulations. Each entity has a supervisor agent (called an 
“avatar”) that monitors its ghosts as they run into the future, and 
selects real-world actions based on those behaviors. 

When agents’ actions can be described as movement in a 
constrained environment, this construct offers an elegant solution 
to the problem of action planning.  

• The environment is an instance of an active environment, as 
it maintains the fields modulated by the ghosts. 

• Like concurrency models, it accounts for concurrent agent 
actions, since ghosts of all entities are active concurrently. 

• Like models of recursive rationality, it provides an account 
of agent behavior, since the ghosts have behavior models that 
they follow in taking action in the shared environment.  

• Also like recursive rationality, it accounts for the mutual 
feedback among agents, since each ghost sees the fields 
generated by the ghosts of all other agents and takes them 
into account in its decisions. 

• Like statistical mechanisms, it is computationally tractable 
and amenable to theoretical analysis by way of the 
probability fields that it generates.  

In addition, because it generates and maintains the probability 
fields dynamically, the polyagent approach does not require their 
manual analysis, is not confined to the structure of predefined 
distribution types, and is not limited to stationary distributions. 

One weakness of polyagents as a general planning mechanism is 
that ghost actions, following their biological models, are 
preeminently movements in space. Planning often needs to 
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accommodate actions that are not readily understood as physical 
movement of the agent performing the action.  

Recently, polyagents have been demonstrated in an environment 
consisting of a hierarchical task network (HTN, specifically, a 
dialect of TÆMS) [1, 16]. Agent movement in this space can 
represent any series of actions, even those that are not simple 
movements. Multiple agents can share a TÆMS network, so a 
polyagent simulation embedded in a TÆMS network can support 
planning in a way analogous to simulations in a geospatial 
network. Each ghost can increment fields on method nodes1 to 
indicate which methods it has sampled. As it explores its 
trajectory, it deposits an “urgency” field on each node that it has 
visited. This value is computed from the overall improvement to 
the quality of the solution that would be contributed by executing 
that node, including the impact of execution deadlines on methods 
that depend on the node’s execution. The avatar then chooses as 
its next action the one preferred by its ghosts. 

Just as the HTN captures some aspects of agent behavior that are 
not represented in a geospatial model, so the geospatial model 
captures some aspects (e.g., the impact of physical constraints 
such as roads, obstacles, gradients, and spatial density of agents) 
that the HTN cannot represent. The environment really needs to 
combine the task structure of the HTN with the physical 
constraints of the geospatial manifold.  

There are other behavioral constraints that neither HTN’s nor 
geospatial maps can express. Consider, for example, the decision 
sequencing represented in a decision tree, or the interpersonal 
exchanges of financial, physical, and political resources mediated 
by a social network. No single topology captures all aspects of 
agent planning. Each topology expresses a different perspective 
on the overall problem.  

In any given problem, some perspectives are often more public 
than others, and thus more likely contexts for possible agent 
interaction. For example, all the tasks in a given HTN might 
belong to the same agent (a “private” HTN), but the execution of 
particular tasks may be constrained by agent interactions in 
another topology (say, a geospatial map or a social network). The 
shared topology serves as the integrating environment 
recommended by [11], but because it is constrained to a single 
perspective, its computational complexity is more manageable 
than a single overall shared environment. Realizing this vision 
requires a way to join multiple topologies together so that 
polyagents can generate appropriate distributions over alternative 
outcomes in each of them, under the influence of the distributions 
that are emerging at the same time in the other environments.  

This paper gives an instance of this methodology with special 
emphasis on swarming agents. Specifically, we show how agents 
can swarm concurrently over linked task network and geospatial 
map topologies. 

Some architectural constraints of maintaining multiple concurrent 
environments for agents have been discussed elsewhere [5]. 

3. ARCHITECTURE 
The polyagent model of field-based agent collaboration was 
originally inspired by chemical pheromone systems in social 
insects such as ants and termites. The multi-perspective system in 

                                                                 
1 We use “method” in the sense used in TÆMS [8], to denote an 

atomic (non-decomposable) task. 

this paper can naturally be seen as a step in the successive 
refinements of that system. Insects, and the earliest applications of 
pheromone-based planning and prediction, deposit their 
pheromones (chemical for insects, digital for agents) on a single 
map, allowing coordination in space, but not in time. The next 
refinement of the agent application of digital pheromones uses a 
series of pheromone maps spaced through time, allowing 
coordination in both space and time. The multi-perspective 
technique outlined in this paper links multiple topologies at each 
temporal epoch. 

3.1 Atemporal Maps 
In the natural world, insects share a single “map,” a physical 
surface, through time. A deposit made at time t, after evaporation 
and propagation, is sensed by later insects that visit that same 
location. The map provides no temporal information, only a 
constantly adjusted probability distribution2 of where members of 
the colony have recently been. It coordinates the members of the 
community in real time, but offers no predictive capability. 

This natural system is the basis of ant colony optimization [2], an 
off-line mechanism that has delivered impressive results in tasks 
such as route optimization. It is also the basis of an early 
application of polyagents in planning air combat missions [20], 
which has become the foundation for a control system for swarms 
of unmanned ground and air vehicles [21]. The ghosts in a 
polyagent system are an engineered parallel to real-world insects. 

3.2 Temporally Indexed Geospatial Maps 
We can move beyond coordination to prediction by maintaining a 
separate field map for each time step in a discrete-time model. In 
the most complete implementation of this approach [10], a fixed 
set of pages (the “book of maps”), indexed by �, spans a period 
from a point in the recent past (the “insertion horizon”) to some 
point in the future.  

The fields on each page between the insertion horizon and � = 0 
(“now”) record the historical state of the world at the point in the 
past to which it corresponds. They are used to fit ghosts’ behavior 
to the observed behavior of the domain entities that their avatars 
represent. The avatar inserts its ghosts at the insertion horizon 
with initial behavioral profiles that may be hand-crafted, or may 
be randomized. The ghosts move forward in time from page to 
page while executing their spatial movement decisions. As they 
do so, they interact with the past state, based on their behavioral 
parameters. These interactions mean that their fitness depends not 
just on their own actions, but also on the behaviors of the rest of 
the population. Because�the ghosts move through the pages faster 
than real time, eventually they reach the page for which � = 0 
(current wall-clock time).3 At this point, each ghost is evaluated 
based on its location compared with the actual location of its 
corresponding real-world entity. 

The fittest ghosts serve three functions. 

                                                                 
2 Interpretation of pheromone fields as probability fields makes it 

possible both to interface swarming methods with other 
machine reasoning technologies, and to develop a formal 
foundation to analyze their performance [15]. 

3 Actually, because the pages discretize time, the condition for 
identifying the current page is |� – t| < �, where � is the interval 
between pages. We use � = t as shorthand for this condition. 
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1. The personality of each 
entity’s fittest ghost is 
reported to the rest of the 
system as the likely 
personality of that entity.  

2. The fittest ghosts breed 
genetically and their 
offspring return to the 
insertion horizon to continue 
the fitting process.  

3. The fittest ghosts for each 
entity run past the avatar's 
present (the page on which � = 0) into the future. Each ghost 
that runs into the future explores a different possible future of 
its entity’s interaction with the environment, analogous to 
how people plan ahead by mentally simulating different ways 
that a situation might unfold. Analysis of the behaviors of 
these different possible futures yields predictions. 

Pages in the book of maps for which �  ≥ 0 have real fields only 
for relatively persistent environmental features such as 
topography or clan territories. Otherwise, the fields to which 
ghosts respond on these pages are built up by the ghosts 
themselves as they traverse them. The first ghosts to visit each 
page do not see any ghost-generated fields, and their behavior is 
constrained only by persistent features. To enable ghosts to 
respond to one another, avatars release them in shifts. In one 
application, each avatar releases a total of 200 ghosts over 100 
shifts, two per shift. The ghosts in each shift respond to the state 
of the fields as modified by the previous shifts.4 This shift 
mechanism is analogous to the recursive rationality model, where 
the number of shifts corresponds to the depth of the recursion: the 
nth shift makes its decision based on the system’s estimate of the 
decisions of the earlier (n – 1) shifts.  

At each time step, each avatar’s ghosts move from one page to the 
next, and the avatar releases a new shift. At each step, each ghost 

1. Evaluates the fields on its current page; 
2. Increments the fields at its location on its current page; 
3. Chooses an action based on the field strengths in step 1; 
4. Executes the action while moving to the next page. 

Thus each ghost step consists of a movement in time and 
(optionally) in space. For example, Figure 1 shows the two ghosts 
moving through the book of maps, one with a preference to follow 
roads, the other cutting across an open field. In addition, at each 
time step the system attenuates the fields on each page by a 
constant factor E, favoring more recent deposits over earlier ones. 

The process outlined in the previous paragraphs takes place with a 
fixed mapping of pages to real-world times. In real-time planning 
applications, we update this mapping as time advances in the real 
world. The trigger for this change may be the passage of a fixed 

                                                                 
4 Ghosts in early shifts do not experience well-defined fields, so 

their movements do not estimate entity movement as reliably as 
those in later shifts, when the fields have converged. To 
accommodate this increase in accuracy over time, at each 
simulation step the field strengths on each page are attenuated 
by a constant factor (a process inspired by pheromone 
evaporation in insect systems). The effect is to weight the 
deposits by later shifts more strongly than those by earlier ones. 

interval of real-world time, or 
some event such as an update 
from real-world sensors. We 
advance time in the following 
manner.  

1. Each avatar takes action 
in the real world, based on the 
distributions generated by its 
ghosts. 
2. The oldest past page is 
deleted. 
3. A new page is added at 

the most remote future time. This step and the previous one 
keep the size of the book of maps constant. 

4. The contents of the first page in the future (which up until 
now have been defined by fields generated by the ghosts) are 
replaced by currently sensed information.  

Because this cycle advances the avatar’s actions, we call the 
period during which the page-time mapping is fixed, an “avatar 
cycle.” The repeated ghost cycles described in the previous 
paragraphs take place during each avatar cycle. 

The temporal sequence of maps in the book of maps can be used 
to formulate predictions of agent movement through time—
predictions that have proven more accurate than those produced, 
not only by other machine learning technologies, but also by 
professional experts in the domain being modeled [14]. 

3.3 Multi-Perspective Modeling 
In multi-perspective polyagent modeling, each page contains, not 
a single topology, but topologies representing different 
perspectives, and ghosts move not only from one page to another, 
but also from one perspective to another. Figure 2 and Figure 3 
outline a simple example, within a single avatar round.  

Each page has three perspectives: a process graph with methods 
ma1-ma5 belonging to entity A, a process graph with methods 
mb1-mb5 belonging to entity B, and a shared geospatial map. The 
process graphs are shown as simple precedence relations among 
methods. Ghosts are represented by ovals. At each time step, all 
ghosts move in time (that is, from one page to another). Some also 
move in task space, geospace, or between perspectives. The task 
spaces are private to each entity, so entity interactions are limited 
to the geospatial map. In this example, the effect of an interaction 
in physical space is to delay the movement of both entities. 

All ghosts begin at �=41. Each ghost is located at a method in the 
process graph of its respective entity. Methods ma1, ma4, ma5, 
mb3, mb4, and mb5 have duration 1. The duration of other 
methods (shaded grey) depends on movement in physical space. 

For clarity, we show the movements of two successive shifts in 
separate figures. Figure 2 shows the movement of two ghosts, one 
from entity A and the other from entity B, launched in shift 1. At 
�=41, both ghosts begin on a method that requires physical 
movement, so they move to the shared geospatial map. Their 
methods require them to move due west. They evaluate the local 
fields, find none, and compute that the next time step will suffice 
for them to move to their destinations, shown as ‘X’. (The 
distance moved in geospace depends on the agent’s mobility, and 
can be more than a single cell, as here.) 

At the next simulation step, both ghosts move to their destinations 
on the page for �=42. As they move from east to west, they 
increments fields specific to their entities (indicated by vertical 

 
Figure 1: Temporally Indexed Geospatial Maps.—Ghosts 
move concurrently in both space and time. 
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hatching for entity A, and 
horizontal hatching for entity B). 
By reaching their destination, they 
complete their respective methods, 
so they move back to their 
respective process graphs, which 
forward them to their successor 
methods. These methods also 
require spatial movement, so the 
ghosts move back to the geospatial 
map at locations dependent on their 
methods and their current state. It 
happens that both of their methods 
require them to move over the same 
path. Thus the ghosts are collocated 
in the geospatial map. However, 
since no ghosts have visited this 
region of the map before, the field 
strengths representing the two 
entities are both zero along the 
required path. So the ghosts determine that they can move without 
restriction to their destinations. In this step, the ghosts have 
moved in time, physical space, process space, and between 
perspectives. 

Next, the ghosts move to �=43. Both ghosts reach their 
(coincidentally common) destination, incrementing their entities’ 
fields along the path (marked by cross-hatching, combining the 
vertical and horizontal hatching of the individual ghosts). In both 
cases, they complete their methods, thus returning to their 
respective process graphs, where they then advance to their next 
methods. These methods do not require geospatial movement, so 
the ghosts wait for the duration indicated in the method.  

In both cases, this duration is just one time step, so in the next 
simulation step, both ghosts move through time and process space 
to their successor methods in the page for �=44.  

The result of the movement of shift 1 is the development of fields 
at regions in the geospatial map visited by the ghosts, as well as 
fields (not shown) on the methods that they have executed. Note 
that the ghosts complete all their methods, both those requiring 
movement and those not requiring movement, in one time unit.  

Now consider the evolution of shift 2, shown in Figure 3. Again, 
ghosts start on the page for �=41. 
Ghost a1 is on a non-movement 
method with a duration of one time 
step, so it decides on its next step to 
move to the successor method. 
Ghost b2 is on a movement method, 
so it takes its position on the 
geospatial map, evaluates the fields 
in its vicinity (finding none), and 
decides that it can on the next step 
complete its movement to its 
destination (marked with an ‘X’) to 
its north-east. 

At the next step, both ghosts move 
to the page for �=42. Ghost b2 
completes its movement and thus 
method mb1, and advances to mb2, 
a movement method that requires it 
to return to the geospatial map. 

Ghost a2 finds itself on a movement method and takes its place on 
the geospatial map as well. The starting locations and destinations 
of movement methods depend on the agent’s state as well as the 
method, so though a2 and b2 are executing methods previously 
visited by a1 and b1, they need not follow the same path.  

Each ghost finds its intended path marked by a field representing 
the presence of the other entity at this point in space and time. 
These fields were deposited by a1 and b1 in the previous shift. 
Ghosts b2 and a2 interpret these fields probabilistically, by 
flipping a coin weighted by the strength of the field. Ghost b2 
samples the case that B meets A at this location, and decides that 
in the next time step, it will not be able to move very far. Ghost a2 
samples the case that A does not meet B, and decides that it can 
reach its destination in the next time step. These stochastic 
decisions are repeated for each ghost that visits the location, so the 
proportion of ghosts sampling an encounter will be proportional to 
the strength of the field. However, unlike a static estimator like a 
Markov transition probability, the strength of the fields varies as 
successive shifts of ghosts traverse the pages and increment the 
fields based on their own estimates of where the entities may 
move.  

Next, the ghosts move to �=43. Both ghosts are moving on the 

 
Figure 2: Multi-Perspective Modeling. Ghosts move in time, space, and perspective. Methods 
shaded grey require completion of a spatial movement. Only ghosts belonging to shift 1 are shown. 

 
Figure 3: Multi-Perspective Modeling, Shift 2.—These ghosts start on the page for �=41 one 
simulation step after those shown in Figure 2. 
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geospatial map, and increment their 
entities’ fields accordingly. Ghost b2 
moves only a short distance, because it is 
sampling a future in which entity B meets 
entity A and is delayed. Upon completing 
its move, it evaluates the fields in its 
vicinity. There are no fields near it for 
entity A at � = 43, so it computes that it can 
complete its move without delay in the 
next simulation step. Ghost a2 reaches its 
destination, because it is sampling a future 
in which A does not meet B. Upon 

reaching its destination, it 
completes method ma3, advances to 
ma4, observes the duration of that 
method, and waits for the 
designated period (one time step). 
Ghost b2 has moved in time and 
physical space. Ghost a2 has moved 
in time, physical space, process 
space, and between perspectives. 

Now the ghosts move to the page for �=44. For ghost a2, this is 
simply a movement in process space, from method ma4 to ma5. 
Ghost b2 completes its movement in the 
geospatial map, incrementing the field for Entity 
B. It returns to its process map, exiting mb2 and 
moving to mb3, where it computes the duration 
needed to execute its next action. 

This simple example illustrates several crucial 
features of the multi-perspective approach to 
modeling agent interaction. 

• A method’s duration can depend on 
interactions, by sampling the interactions in 
a different perspective (in this case, the 
geospatial map). 

• The probabilities that are used to estimate a 
method’s duration are developed 
dynamically by the agents during the 
model’s execution. 

• Methods with no interaction contingencies 
are efficiently executed directly, based on 
recorded durations. In some cases, experience may allow us 
to define a closed-form distribution of execution times for a 
movement method, thus avoiding the need to send the ghosts 
for that method to the geospatial perspective. 

In this example, the same agents move through both task space 
and physical space. In some cases, different classes of entity move 
in different spaces. For example, the entities that move through 
task and physical space might be stationary nodes in a social 
network. In that perspective, mobile agents could represent 
resources such as money or materials that are passed from one 
actor to another. Ghosts representing these resource agents would 
then drop down into the process graph to supply enabling 
resources [1] (not shown in the simplified process graphs of 
Figure 2 and Figure 3) and thus allow ghosts of actors to complete 
the methods supplied by those resources. In all cases, ghosts move 
between perspectives to explore interactions between their 
avatars, but multiple species of avatars may be involved. 

4. EXAMPLE 

We illustrate this approach with an urban 
delivery scenario (Figure 4). A bicycle 
courier services two small manufacturing 
workshops (M1 and M2) and two retailers 
(R1 and R2). M1 makes products only for 
R2, while M2 makes products for both M1 
and M2. The city is very congested, and 
sometimes demonstrations and street 
rallies prevent the courier from completing 
a delivery on time, in which case she is not 
paid. Such disruptions are particularly 
common in the vicinity of the parliament, 

which is close to R2. Her planning 
process thus must take into account 
not only the supply of products and 
the demand from the retailers, but 
also her estimate of the likelihood of 
heavy traffic in different parts of the 
town. 

Figure 5 shows a fragment of her 
process graph. The three “ Move 

from X to Y” methods require her ghosts to swarm in the 
geospatial map in order to determine the duration of the method. 

She can choose to pick up either a shipment for R1 
(which must come from M2), or a shipment for R2 
(which can come from either workshop), then 
move to the appropriate retailer. A trivial process 
graph (not shown) for demonstrators determines 
the degree of traffic around the Parliament on a 
given day. 

We demonstrate the behavior of our 
implementation of this system with two different 
situations. In one, there is no demonstration, and 
the two deliveries are of equal value. In the second, 
a demonstration around the parliament impedes 
access to R2. 

In the first configuration, with no demonstration, 
the ghosts representing the courier initially explore 
all possible routes (Figure 6, top). The ghosts that 
explore the route from M2 to R1 travel a longer 
distance than those on the other two paths, leaving 

a weaker field. By the seventh avatar cycle (Figure 6, bottom), 
most ghosts are favoring the M2-to-R2 route. Figure 8 shows the 
total ghost activations in each avatar cycle for each destination. 

Figure 7 shows the locations of ghost executions in geospace in 
the second configuration. The cluster of ghosts around R2 
represents the avatars of the demonstrators. Again, initially 
(Figure 7, top), they explore all routes, but ghosts attempting to 
deliver to R2 are less successful and leave less reinforcement for 
successive ghosts, so that by avatar shift 7, only ghosts exploring 
paths from M1 (which can only deliver to R2) are attempting this 
path.  

Figure 9 shows ghost executions by destination as a function of 
avatar cycle. In the initial cycle, successive shifts of ghosts 
reinforce the shorter paths, leading to a preference for R2 in spite 
of the demonstrators (though the number of R2 ghosts is lower 
than in the first scenario, due to the congestion near R2). But this 
benefit drops in subsequent avatar cycles, and most ghosts pursue 
the M2-R1 route, which the avatar follows. 

 
Figure 4: Urban delivery scenario. Two 
shops M1, M2 supply two retailers R1, R2. 
Retailer R2 is near the parliament building.  

 

Figure 5: Process Graph for Delivery Example 

 
Figure 6: Ghost execution 
locations in geospace as 
function of avatar cycle (no 
demonstration) 
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We have exhibited only two extremes in which the 
courier’s preference for the two destinations flips. 
As the strength of the demonstration varies, we 
obtain intermediate results between those of 
Figure 8 and Figure 9. In particular, we could find 
the point at which the courier’s preference for the 
shorter route is balanced by the delay imposed by 
the demonstration.  

5. DISCUSSION 
The simple example in Section 4 illustrates how 
the behavior of the courier’s avatar in process 
space is affected by the presence or absence of 
interactions with other agents (the demonstrators) 
in geospace. Without a multiperspective model, 
we would have to estimate an explicit distribution 
for the duration and success of the movement 
methods as a function of level of demonstration, a 
laborious task that would be difficult to validate. In our approach, 
we simply ask each ghost to step into the geospatial world and see 
what happens. The interaction effect is estimated constructively, 
by direct simulation in the appropriate domain, and communicated 
between perspectives by the movement of ghosts sampling 
alternative futures for their avatars. The large sample of futures 
accessed by the ghosts [15] increases our 
confidence in the robustness of the 
emergent effects that they exhibit. 

The multi-perspective polyagent approach 
to modeling interactive agents draws from 
each of the four antecedents outlined in 
Section 2, while addressing the 
shortcomings we identified there. 

Of the four techniques we discussed, the 
only one not directly reflected in our 
approach is the use of a concurrency 
formalism such as CSP, RPN’s, or the Pi 
calculus. These techniques have their 
place in the meta-analysis of a multi-agent 
system [13], but we have not directly 
applied them in this work.  

The set of topologies, one for each perspective, forms an active 
environment. Each perspective actively maintains the fields by 
aggregating the increments deposited by each ghost and 
attenuating the fields over time to favor the more recent shifts. 
Because the environment is partitioned into different perspectives, 
and because agent interactions typically involve only a subset of 
the perspectives, the complexity of the 
environment’s computations is reduced 
compared with a single global 
environment.  

As in models of recursive rationality, 
and unlike purely statistical methods, 
multi-perspective polyagents maintain 
explicit models of the decision-making of 
each agent. The successive waves of ghost 
agents that build up the probability fields 
correspond directly to the levels of 
recursion in recursive rationality. The 
convergence of the probability fields 
offers a quantitative way to determine how 
far to extend the recursion (i.e., how many 

shifts to send through the system), and the 
probabilistic nature of the result is a more realistic 
guide to prediction than the single result emerging 
from agents’ deterministic recursive estimates of 
one another’s decisions. 

The probabilistic nature of the ghosts’ decision-
making is at variance with most recursive 
reasoning approaches, and more closely resembles 
statistical process models such as Markov 
models. We share many benefits of these models, 
including the relative computational efficiency of 
numerical over symbolic reasoning, and the ease 
of interfacing with the many machine learning 
techniques that are based in probability theory. At 
the same time, we offer several advantages over 
conventional statistical models. Our model of 
individual agent behavior can be mapped readily 

onto rational decision models. By tracking individual agents, 
rather than simply transitions in the state of the overall system, we 
avoid the anomalies that often arise with mean-field methods [22, 
23]. And the maintenance of probability fields by ghosts that are 
in turn evolved against observations from the domain avoids the 
limitations of static transition probabilities endemic to more 

traditional statistical approaches. 

The approach outlined in this paper will 
increase in value as we develop further 
perspectives, in addition to geospatial 
maps and task networks. Our current 
priority is to incorporate reasoning over 
various social networks. As suggested 
above, the agents that swarm over a social 
network may be different from the domain 
actors that we have discussed in the 
examples in this paper. In a network 
representing financial flows, they may 
constitute financial resources. In a 
communication network, they may 
develop a field indicating the likelihood of 
communication between two actors at a 

given epoch. Both financial resources and coordinating messages 
naturally feed into the resource nodes that enable methods in a full 
rTÆMS network (not shown in the simplified examples in this 
paper, but discussed in [1]).  

The modularity achieved by decomposing the environment into 
multiple perspectives allows a more general extension, in which 
the dynamics of some perspectives are computed, not by 

swarming agents, but by other techniques, 
such as difference or differential 
equations, conventional Markov models, 
or BDI mechanisms. In turn, distributions 
that can be derived from our swarms can 
provide non-swarming probabilistic 
reasoners with dynamically-varying, 
nonstationary estimates of important 
variables that would be difficult to 
estimate in any other way. 
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Figure 7: Ghost execution 
locations in geospace with 
demonstration 

 
Figure 8: Total ghost executions by 

destination, no demonstration 

 
Figure 9: Total ghost executions by 
destination, with demonstration 

Avatar Cycle 0

Avatar Cycle 7

M1 M2

R1

R2

M1 M2

R1

R2

�
����
����
����
����
	����
	����
	����
	����
	����

� 	 � 
 � � � �

��
��
���

	�

�



�����������

�

	

�
����
����
����
����
	����
	����
	����
	����
	����

� 	 � 
 � � � �

��
��
���

	�

�



�����������

�

	

555



necessarily reflect the opinions of the sponsor. 

We are grateful for stimulating interactions with our colleagues 
Rainer Hilscher, Bob Bechtel, and Laura Hamel, who helped 
develop and implement the algorithms reported in this paper, and 
to a careful reviewer. 

7. REFERENCES 
[1] S. Brueckner, T. Belding, R. Bisson, E. Downs, and H. V. D. 

Parunak. Swarming Polyagents Executing Hierarchical Task 
Networks. In Proceedings of Third IEEE International 
Conference on Self-Adaptive and Self-Organizing Systems 
(SASO 2009), IEEE, 2009. 

[2] M. Dorigo and T. Stuetzle. Ant Colony Optimization. 
Cambridge, MA, MIT Press, 2004. 

[3] A. El Fallah Seghrouchni and S. Haddad. A Recursive Model 
for Distributed Planning. In Proceedings of the 2nd 
International Conference on Multi-Agent Systems 
(ICMAS'96), pages 307-314, AAAI Press, 1996. 

[4] J. Ferber and J.-P. Müller. Influences and Reactions: a Model 
of Situated Multiagent Systems. In Proceedings of Second 
International Conference on Multi-Agent Systems (ICMAS-
96), pages 72-79, AAAI, 1996. 

[5] M. A. d. C. Gatti and C. J. P. d. Lucena. A Multi-
Environment Multi-Agent Simulation Framework for Self-
Organizing Systems. In Proceedings of the 10th 
International Workshop on Multi-Agent-Based Simulation 
(MABS 2009), Springer, 2009. 

[6] P. J. Gmytrasiewicz and E. H. Durfee. A Rigorous, 
Operational Formalization of Recursive Modeling. In 
Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS'95), pages 125-132, 1995. 

[7] C. A. R. Hoare. Communicating Sequential Processes. 
Englewood Cliffs, NJ, Prentice-Hall, 1985. 

[8] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, S. 
Zhang, K. Decker, and A. Garvey. The Taems White Paper. 
Multi-Agent Systems Lab, University of Massachusetts, 
Amherst, MA, 2004. 
http://dis.cs.umass.edu/research/taems/white/. 

[9] M. Łatek, R. L. Axtell, and B. Kaminski. Bounded rationality 
via recursion. In Proceedings of Eighth International 
Conference on Autonomous Agents and Multi-Agent Systems 
(AAMAS 2009), pages 457-464, IFAAMAS, 2009. 

[10] T. W. Lucas and J. A. Dinges. The Effect of Battle 
Circumstances on Fitting Lanchester Equations to the Battle 
of Kursk. Military Operations Research, 9(2):17-30, 2004. 

[11] F. Michel. Formalisme, méthodologie et outils pour la 
modélisation et la simulation de systèmes multi-agents. 
Thesis at Université des Sciences et Techniques du 
Languedoc, Department of Informatique, 2004. 

[12] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge, UK, Cambridge Univ. Press, 1999. 

[13] H. V. D. Parunak. Manufacturing Experience with the 
Contract Net. In M. N. Huhns, Editor, Distributed Artificial 
Intelligence, pages 285-310. Pitman, London, 1987. 

[14] H. V. D. Parunak. Real-Time Agent Characterization and 
Prediction. In Proceedings of International Joint Conference 
on Autonomous Agents and Multi-Agent Systems 
(AAMAS'07), Industrial Track, pages 1421-1428, ACM, 
2007. 

[15] H. V. D. Parunak. Generation and Analysis of Multiple 
Futures with Swarming Agents. In Proceedings of the 
International Joint Conference on Autonomous Agents and 
Multi-Agent Systems (AAMAS 2010), pages (forthcoming), 
IFAAMAS, 2010. 

[16] H. V. D. Parunak, T. Belding, R. Bisson, S. Brueckner, E. 
Downs, R. Hilscher, and K. Decker. Stigmergic Modeling of 
Hierarchical Task Networks. In Proceedings of the Tenth 
International Workshop on Multi-Agent-Based Simulation 
(MABS 2009, at AAMAS 2009), pages (forthcoming), 
Springer, 2009. 

[17] H. V. D. Parunak and S. Brueckner. Concurrent Modeling of 
Alternative Worlds with Polyagents. In Proceedings of the 
Seventh International Workshop on Multi-Agent-Based 
Simulation (MABS06, at AAMAS06), Springer, 2006. 

[18] H. V. D. Parunak, S. Brueckner, D. Weyns, T. Holvoet, and 
P. Valckenaers. E Pluribus Unum: Polyagent and Delegate 
MAS Architectures. In Proceedings of Eighth International 
Workshop on Multi-Agent-Based Simulation (MABS07), 
pages 36-51, Springer, 2007. 

[19] H. Raiffa. Decision Analysis: Introductory Lectures on 
Choices Under Uncertainty. McGraw-Hill, 1997. 

[20] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A. 
Brueckner. Performance of Digital Pheromones for 
Swarming Vehicle Control. In Proceedings of Fourth 
International Joint Conference on Autonomous Agents and 
Multi-Agent Systems, pages 903-910, ACM, 2005. 

[21] J. A. Sauter, R. S. Matthews, J. S. Robinson, J. Moody, and 
S. P. Riddle. Swarming Unmanned Air and Ground Systems 
for Surveillance and Base Protection. In Proceedings of 
AIAA Infotech@Aerospace 2009 Conference, AIAA, 2009. 

[22] N. M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon. 
The importance of being discrete: Life always wins on the 
surface. Proc. Natl. Acad. Sci. USA, 97(19 (September 
12)):10322-10324, 2000. 

[23] W. G. Wilson. Resolving Discrepancies between 
Deterministic Population Models and Individual-Based 
Simulations. American Naturalist, 151(2):116-134, 1998. 

 
 

 

556


