
Agent Interaction, Multiple Perspectives, and Swarming
Simulation

H. Van Dyke Parunak Robert Bisson Sven A. Brueckner
Vector Research Center, division of TTGSI

3520 Green Court, Suite 250
Ann Arbor, MI 48105

+1 734 302 4684 +1 734 302 4648 +1 734 302 4683

{van.parunak, robert.bisson, sven.brueckner}@newvectors.net
ABSTRACT
Agents in a multi-agent system do not act in a vacuum. The
outcome of their efforts depends on the environment in which
they seek to act, and in particular on the efforts of other agents
with whom they share the environment. We review previous
efforts to address this problem, including active environments,
concurrency modeling, recursive reasoning, and stochastic
processes. Then we propose an approach that combines active
environments and stochastic processes while addressing their
limitations: a swarming agent simulation (which maintains
transition probabilities dynamically, avoiding the static
assumptions most convenient with traditional Markov models),
applied concurrently to multiple perspectives (thus partitioning
the active environment and addressing its scalability challenges).
We demonstrate this method on a simple example.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence – multiagent systems.

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Modeling, polyagents, biomimetic systems, agent interaction,
prediction, agent environments, swarming

1. INTRODUCTION
“Ah, but a man's reach should exceed his grasp, or what's a

heaven for?”—Robert Browning,

Browning’s aphorism captures a notorious problem of agent-
based planning. Most plans consist of multiple steps, and later
steps often depend on the successful execution of earlier ones
(“precursors”). Planning the execution of a precursor, or even
attempting to execute it, does not guarantee that it will be
accomplished. Agents are not omnipotent over their environment.
Sometimes they are frustrated by the actions of other agents with
whom they share the environment. In other cases, the environment
has its own distributed dynamics (e.g., weather). Every agent
action is only an attempt, whose success (along with the success
of later steps that depend on that action) is contingent.

When other agents make the environment dynamic, the situation
becomes more complicated. Those agents are also attempting to

act, and their actions are just as contingent as the actions of the
initial agent. Each agent’s success at any given action depends on
the success or failure of the other agents, which in turn depend on
its success or failure, and so forth.

Reasoning explicitly about this recursive feedback is
computationally prohibitive in many realistic domains, and may
not converge. The most straightforward application of statistical
models such as Markov processes make unrealistic assumptions
about the shape and stationarity of the underlying distributions.
Our approach is statistical, but maintains its distributions
dynamically by means of coupled agent-based simulations. Most
multi-agent models explore only one trajectory per run, and so
cannot efficiently generate distributions to guide estimates of
action success. A swarming approach avoids this problem.

Agent activity can often be viewed from multiple perspectives,
such as the structure of the tasks that the agent is trying to
execute, the agent’s social environment, and actions in the
physical world. Some of these perspectives are essentially private,
but may be constrained by public perspectives. The technology we
outline in this paper allows us to partition the modeling by
perspective (thus simplifying the modeling problem) while
providing sufficient information flow among the perspectives to
resolve shared constraints.

Section 2 points to related literature on the problem of action in a
multi-agent world. Section 3 summarizes our statistically-oriented
agent-based modeling technology. Section 4 illustrates the
approach with results from a concrete example. Section 5
discusses the relation of multi-perspective modeling to other ways
of reasoning about action uncertainty.

2. REASONING ABOUT ACTION
UNCERTAINTY
The problem of the uncertain outcome of an agent’s actions has
been articulated by a number of authors [4, 11], and several
solutions have been proposed.

The most detailed analysis [11] recommends that simulation
architectures include an active environment. The simulation
cycle consists of alternating decisions by the population of agents
(who post their desired actions to the environment) and resolution
by the environment (which decides which actions succeed). This
approach addresses the problem, but at the expense of
programming a dynamically omniscient environment that
becomes more and more complex as the size and semantic
richness of a problem grows.

Formalisms such as CSP [7] and the Pi calculus [12] seek to
model the concurrent aspect of multiple agent actions. An
example of applying this approach in the early tradition of
software agents [3] develops Recursive Petri Nets (RPN’s) to

Cite as: Agent Interaction, Multiple Perspectives, and Swarming
Simulation, Parunak, Bisson, and Brueckner, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,

Toronto, Canada, pp. Copyright © 2010, International
Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

549

549-556

account for concurrent actions of multiple agents. By deferring the
refinement of an abstract transition until execution, RPN’s allow
agents to take into account the current circumstances in their
choices. This formalism encourages interleaving of planning and
execution (which in our view is good), but explicitly avoids the
question of how to choose a refinement, and thus sidesteps issues
of goal conflict among agents. It also does not identify actions that
are so invariant under execution context that they can be modeled
as abstract transitions whose place in the overall net structure will
not be affected by differing outcomes of atomic actions. More
generally, abstract concurrent modeling languages abstract away
from details of agent decision processes and domain semantics
that are important in modeling real-world situations.

Some researchers let each agent reason recursively about likely
acts of other agents. Gmytrasiewicz [6] develops an elaborate
game-theoretic formalism, and argues that the recursion will
inevitably terminate due to lack of information. Łatek [9] lets
agents incrementally increase the depth of recursive reasoning
while monitoring the payoff they experience to find the number of
levels that are actually useful. Recursive reasoning accounts for
agents’ intentionality, but does not account for outcomes that are
not rationally driven (such as those of nature).

One can model the response of the environment (including other
agents) as stochastic, subsuming all intentionality in probability
distributions over alternative actions. (Gmytrasiewicz’s Sub-
Intentional Model allows this case for non-intentional agents such
as laws of nature, and as a way to terminate recursion.) Decision
tree analysis [19] is perhaps the simplest application of this
approach. The nodes in the tree alternate between choices by the
agent and responses of the environment. A probability is assigned
to each environmental response, utilities are associated with the
outcomes, and by propagating the utilities through the intervening
probabilities, a value can be placed on each choice open to the
agent. Another formalism for modeling dynamical systems
involving uncertainty is the Markov process, which associates a
probability of success pa,s with each action. At each step, the
system decides with this probability whether the action succeeds
or not. This approach is computationally attractive. For example,
it is tractable, and it permits studying the convergence of a series
of repeated actions by matrix products over the transition
probabilities. However, it has several disadvantages.

1. Its purely numerical nature discards any insight that might be
available from examining agent intentions.

2. Determining the probabilities in a stochastic model of a large
real-world scenario is a daunting task.

3. These probabilities in general do not conform to any
particular distribution (making sampling them difficult), and
they are likely to be nonstationary, greatly complicating the
analysis.

To make this last observation more concrete, consider a scenario
in which a single agent seeks to move from one point to another in
the face of a team of opposing agents. For a given strength of the
opposition, what will the distribution of arrival times look like
across multiple replications of the scenario? Intuitively (and
confirmed by experiment),

• If the opposition is weak, the arrival time distribution will be
unimodal, around a value that marginalizes over stochastic
variations in the travel time experienced in different
replications of the scenario.

• If the opposition is very strong, the distribution will again be
unimodal and in fact univalued at infinity. No replication will
yield a successful arrival.

• At intermediate values, some replications will succeed and
some will fail, yielding a bimodal distribution. One mode, at
infinity, will represent trials that did not succeed. The other
will reflect arrival times for trials that did succeed. The
location of the success mode and the relative size of the two
modes will depend on the degree of opposition.

In such a situation, none of the previous approaches suffices. The
complexity of a single active environment does not scale to large
problems. Mere analysis of concurrency cannot capture the
adversarial relation between the players. There is no natural
termination to the recursion in the recursive rationality approach,
and the non-stationary, non-canonical form of the underlying
statistics frustrates the standard forms of statistical analysis.

We use multiple agents to represent each domain entity, an
approach that has been called a “polyagent” [17] and that has
parallels in other systems [18]. Each agent (a “ghost”) explores a
(possibly distinct) possible future for its entity. Ghosts record their
movement through the environment by depositing a digital analog
of insect pheromones, and interact with the ghosts of other
entities, not directly, but by sampling the pheromone fields that
they generate. These fields are, up to a normalizing constant,
probability fields over the alternative futures explored by the
ghosts [15]. The field for a single entity reflects all the possible
futures explored by its ghosts, and when a ghost of another entity
modulates its behavior based on that field, it is sampling over
those futures. Thus the total number of system futures explored by
a polyagent system with g ghosts for each of e entities is on the
order of ge, far larger than can be explored with single-trajectory
simulations. Each entity has a supervisor agent (called an
“avatar”) that monitors its ghosts as they run into the future, and
selects real-world actions based on those behaviors.

When agents’ actions can be described as movement in a
constrained environment, this construct offers an elegant solution
to the problem of action planning.

• The environment is an instance of an active environment, as
it maintains the fields modulated by the ghosts.

• Like concurrency models, it accounts for concurrent agent
actions, since ghosts of all entities are active concurrently.

• Like models of recursive rationality, it provides an account
of agent behavior, since the ghosts have behavior models that
they follow in taking action in the shared environment.

• Also like recursive rationality, it accounts for the mutual
feedback among agents, since each ghost sees the fields
generated by the ghosts of all other agents and takes them
into account in its decisions.

• Like statistical mechanisms, it is computationally tractable
and amenable to theoretical analysis by way of the
probability fields that it generates.

In addition, because it generates and maintains the probability
fields dynamically, the polyagent approach does not require their
manual analysis, is not confined to the structure of predefined
distribution types, and is not limited to stationary distributions.

One weakness of polyagents as a general planning mechanism is
that ghost actions, following their biological models, are
preeminently movements in space. Planning often needs to

550

accommodate actions that are not readily understood as physical
movement of the agent performing the action.

Recently, polyagents have been demonstrated in an environment
consisting of a hierarchical task network (HTN, specifically, a
dialect of TÆMS) [1, 16]. Agent movement in this space can
represent any series of actions, even those that are not simple
movements. Multiple agents can share a TÆMS network, so a
polyagent simulation embedded in a TÆMS network can support
planning in a way analogous to simulations in a geospatial
network. Each ghost can increment fields on method nodes1 to
indicate which methods it has sampled. As it explores its
trajectory, it deposits an “urgency” field on each node that it has
visited. This value is computed from the overall improvement to
the quality of the solution that would be contributed by executing
that node, including the impact of execution deadlines on methods
that depend on the node’s execution. The avatar then chooses as
its next action the one preferred by its ghosts.

Just as the HTN captures some aspects of agent behavior that are
not represented in a geospatial model, so the geospatial model
captures some aspects (e.g., the impact of physical constraints
such as roads, obstacles, gradients, and spatial density of agents)
that the HTN cannot represent. The environment really needs to
combine the task structure of the HTN with the physical
constraints of the geospatial manifold.

There are other behavioral constraints that neither HTN’s nor
geospatial maps can express. Consider, for example, the decision
sequencing represented in a decision tree, or the interpersonal
exchanges of financial, physical, and political resources mediated
by a social network. No single topology captures all aspects of
agent planning. Each topology expresses a different perspective
on the overall problem.

In any given problem, some perspectives are often more public
than others, and thus more likely contexts for possible agent
interaction. For example, all the tasks in a given HTN might
belong to the same agent (a “private” HTN), but the execution of
particular tasks may be constrained by agent interactions in
another topology (say, a geospatial map or a social network). The
shared topology serves as the integrating environment
recommended by [11], but because it is constrained to a single
perspective, its computational complexity is more manageable
than a single overall shared environment. Realizing this vision
requires a way to join multiple topologies together so that
polyagents can generate appropriate distributions over alternative
outcomes in each of them, under the influence of the distributions
that are emerging at the same time in the other environments.

This paper gives an instance of this methodology with special
emphasis on swarming agents. Specifically, we show how agents
can swarm concurrently over linked task network and geospatial
map topologies.

Some architectural constraints of maintaining multiple concurrent
environments for agents have been discussed elsewhere [5].

3. ARCHITECTURE
The polyagent model of field-based agent collaboration was
originally inspired by chemical pheromone systems in social
insects such as ants and termites. The multi-perspective system in

1 We use “method” in the sense used in TÆMS [8], to denote an

atomic (non-decomposable) task.

this paper can naturally be seen as a step in the successive
refinements of that system. Insects, and the earliest applications of
pheromone-based planning and prediction, deposit their
pheromones (chemical for insects, digital for agents) on a single
map, allowing coordination in space, but not in time. The next
refinement of the agent application of digital pheromones uses a
series of pheromone maps spaced through time, allowing
coordination in both space and time. The multi-perspective
technique outlined in this paper links multiple topologies at each
temporal epoch.

3.1 Atemporal Maps
In the natural world, insects share a single “map,” a physical
surface, through time. A deposit made at time t, after evaporation
and propagation, is sensed by later insects that visit that same
location. The map provides no temporal information, only a
constantly adjusted probability distribution2 of where members of
the colony have recently been. It coordinates the members of the
community in real time, but offers no predictive capability.

This natural system is the basis of ant colony optimization [2], an
off-line mechanism that has delivered impressive results in tasks
such as route optimization. It is also the basis of an early
application of polyagents in planning air combat missions [20],
which has become the foundation for a control system for swarms
of unmanned ground and air vehicles [21]. The ghosts in a
polyagent system are an engineered parallel to real-world insects.

3.2 Temporally Indexed Geospatial Maps
We can move beyond coordination to prediction by maintaining a
separate field map for each time step in a discrete-time model. In
the most complete implementation of this approach [10], a fixed
set of pages (the “book of maps”), indexed by �, spans a period
from a point in the recent past (the “insertion horizon”) to some
point in the future.

The fields on each page between the insertion horizon and � = 0
(“now”) record the historical state of the world at the point in the
past to which it corresponds. They are used to fit ghosts’ behavior
to the observed behavior of the domain entities that their avatars
represent. The avatar inserts its ghosts at the insertion horizon
with initial behavioral profiles that may be hand-crafted, or may
be randomized. The ghosts move forward in time from page to
page while executing their spatial movement decisions. As they
do so, they interact with the past state, based on their behavioral
parameters. These interactions mean that their fitness depends not
just on their own actions, but also on the behaviors of the rest of
the population. Because�the ghosts move through the pages faster
than real time, eventually they reach the page for which � = 0
(current wall-clock time).3 At this point, each ghost is evaluated
based on its location compared with the actual location of its
corresponding real-world entity.

The fittest ghosts serve three functions.

2 Interpretation of pheromone fields as probability fields makes it

possible both to interface swarming methods with other
machine reasoning technologies, and to develop a formal
foundation to analyze their performance [15].

3 Actually, because the pages discretize time, the condition for
identifying the current page is |� – t| < �, where � is the interval
between pages. We use � = t as shorthand for this condition.

551

1. The personality of each
entity’s fittest ghost is
reported to the rest of the
system as the likely
personality of that entity.

2. The fittest ghosts breed
genetically and their
offspring return to the
insertion horizon to continue
the fitting process.

3. The fittest ghosts for each
entity run past the avatar's
present (the page on which � = 0) into the future. Each ghost
that runs into the future explores a different possible future of
its entity’s interaction with the environment, analogous to
how people plan ahead by mentally simulating different ways
that a situation might unfold. Analysis of the behaviors of
these different possible futures yields predictions.

Pages in the book of maps for which � ≥ 0 have real fields only
for relatively persistent environmental features such as
topography or clan territories. Otherwise, the fields to which
ghosts respond on these pages are built up by the ghosts
themselves as they traverse them. The first ghosts to visit each
page do not see any ghost-generated fields, and their behavior is
constrained only by persistent features. To enable ghosts to
respond to one another, avatars release them in shifts. In one
application, each avatar releases a total of 200 ghosts over 100
shifts, two per shift. The ghosts in each shift respond to the state
of the fields as modified by the previous shifts.4 This shift
mechanism is analogous to the recursive rationality model, where
the number of shifts corresponds to the depth of the recursion: the
nth shift makes its decision based on the system’s estimate of the
decisions of the earlier (n – 1) shifts.

At each time step, each avatar’s ghosts move from one page to the
next, and the avatar releases a new shift. At each step, each ghost

1. Evaluates the fields on its current page;
2. Increments the fields at its location on its current page;
3. Chooses an action based on the field strengths in step 1;
4. Executes the action while moving to the next page.

Thus each ghost step consists of a movement in time and
(optionally) in space. For example, Figure 1 shows the two ghosts
moving through the book of maps, one with a preference to follow
roads, the other cutting across an open field. In addition, at each
time step the system attenuates the fields on each page by a
constant factor E, favoring more recent deposits over earlier ones.

The process outlined in the previous paragraphs takes place with a
fixed mapping of pages to real-world times. In real-time planning
applications, we update this mapping as time advances in the real
world. The trigger for this change may be the passage of a fixed

4 Ghosts in early shifts do not experience well-defined fields, so

their movements do not estimate entity movement as reliably as
those in later shifts, when the fields have converged. To
accommodate this increase in accuracy over time, at each
simulation step the field strengths on each page are attenuated
by a constant factor (a process inspired by pheromone
evaporation in insect systems). The effect is to weight the
deposits by later shifts more strongly than those by earlier ones.

interval of real-world time, or
some event such as an update
from real-world sensors. We
advance time in the following
manner.

1. Each avatar takes action
in the real world, based on the
distributions generated by its
ghosts.
2. The oldest past page is
deleted.
3. A new page is added at

the most remote future time. This step and the previous one
keep the size of the book of maps constant.

4. The contents of the first page in the future (which up until
now have been defined by fields generated by the ghosts) are
replaced by currently sensed information.

Because this cycle advances the avatar’s actions, we call the
period during which the page-time mapping is fixed, an “avatar
cycle.” The repeated ghost cycles described in the previous
paragraphs take place during each avatar cycle.

The temporal sequence of maps in the book of maps can be used
to formulate predictions of agent movement through time—
predictions that have proven more accurate than those produced,
not only by other machine learning technologies, but also by
professional experts in the domain being modeled [14].

3.3 Multi-Perspective Modeling
In multi-perspective polyagent modeling, each page contains, not
a single topology, but topologies representing different
perspectives, and ghosts move not only from one page to another,
but also from one perspective to another. Figure 2 and Figure 3
outline a simple example, within a single avatar round.

Each page has three perspectives: a process graph with methods
ma1-ma5 belonging to entity A, a process graph with methods
mb1-mb5 belonging to entity B, and a shared geospatial map. The
process graphs are shown as simple precedence relations among
methods. Ghosts are represented by ovals. At each time step, all
ghosts move in time (that is, from one page to another). Some also
move in task space, geospace, or between perspectives. The task
spaces are private to each entity, so entity interactions are limited
to the geospatial map. In this example, the effect of an interaction
in physical space is to delay the movement of both entities.

All ghosts begin at �=41. Each ghost is located at a method in the
process graph of its respective entity. Methods ma1, ma4, ma5,
mb3, mb4, and mb5 have duration 1. The duration of other
methods (shaded grey) depends on movement in physical space.

For clarity, we show the movements of two successive shifts in
separate figures. Figure 2 shows the movement of two ghosts, one
from entity A and the other from entity B, launched in shift 1. At
�=41, both ghosts begin on a method that requires physical
movement, so they move to the shared geospatial map. Their
methods require them to move due west. They evaluate the local
fields, find none, and compute that the next time step will suffice
for them to move to their destinations, shown as ‘X’. (The
distance moved in geospace depends on the agent’s mobility, and
can be more than a single cell, as here.)

At the next simulation step, both ghosts move to their destinations
on the page for �=42. As they move from east to west, they
increments fields specific to their entities (indicated by vertical

Figure 1: Temporally Indexed Geospatial Maps.—Ghosts
move concurrently in both space and time.

�
�

�

�
�

�

�
�

�

ττττ =41 ττττ =42 ττττ =43

552

hatching for entity A, and
horizontal hatching for entity B).
By reaching their destination, they
complete their respective methods,
so they move back to their
respective process graphs, which
forward them to their successor
methods. These methods also
require spatial movement, so the
ghosts move back to the geospatial
map at locations dependent on their
methods and their current state. It
happens that both of their methods
require them to move over the same
path. Thus the ghosts are collocated
in the geospatial map. However,
since no ghosts have visited this
region of the map before, the field
strengths representing the two
entities are both zero along the
required path. So the ghosts determine that they can move without
restriction to their destinations. In this step, the ghosts have
moved in time, physical space, process space, and between
perspectives.

Next, the ghosts move to �=43. Both ghosts reach their
(coincidentally common) destination, incrementing their entities’
fields along the path (marked by cross-hatching, combining the
vertical and horizontal hatching of the individual ghosts). In both
cases, they complete their methods, thus returning to their
respective process graphs, where they then advance to their next
methods. These methods do not require geospatial movement, so
the ghosts wait for the duration indicated in the method.

In both cases, this duration is just one time step, so in the next
simulation step, both ghosts move through time and process space
to their successor methods in the page for �=44.

The result of the movement of shift 1 is the development of fields
at regions in the geospatial map visited by the ghosts, as well as
fields (not shown) on the methods that they have executed. Note
that the ghosts complete all their methods, both those requiring
movement and those not requiring movement, in one time unit.

Now consider the evolution of shift 2, shown in Figure 3. Again,
ghosts start on the page for �=41.
Ghost a1 is on a non-movement
method with a duration of one time
step, so it decides on its next step to
move to the successor method.
Ghost b2 is on a movement method,
so it takes its position on the
geospatial map, evaluates the fields
in its vicinity (finding none), and
decides that it can on the next step
complete its movement to its
destination (marked with an ‘X’) to
its north-east.

At the next step, both ghosts move
to the page for �=42. Ghost b2
completes its movement and thus
method mb1, and advances to mb2,
a movement method that requires it
to return to the geospatial map.

Ghost a2 finds itself on a movement method and takes its place on
the geospatial map as well. The starting locations and destinations
of movement methods depend on the agent’s state as well as the
method, so though a2 and b2 are executing methods previously
visited by a1 and b1, they need not follow the same path.

Each ghost finds its intended path marked by a field representing
the presence of the other entity at this point in space and time.
These fields were deposited by a1 and b1 in the previous shift.
Ghosts b2 and a2 interpret these fields probabilistically, by
flipping a coin weighted by the strength of the field. Ghost b2
samples the case that B meets A at this location, and decides that
in the next time step, it will not be able to move very far. Ghost a2
samples the case that A does not meet B, and decides that it can
reach its destination in the next time step. These stochastic
decisions are repeated for each ghost that visits the location, so the
proportion of ghosts sampling an encounter will be proportional to
the strength of the field. However, unlike a static estimator like a
Markov transition probability, the strength of the fields varies as
successive shifts of ghosts traverse the pages and increment the
fields based on their own estimates of where the entities may
move.

Next, the ghosts move to �=43. Both ghosts are moving on the

Figure 2: Multi-Perspective Modeling. Ghosts move in time, space, and perspective. Methods
shaded grey require completion of a spatial movement. Only ghosts belonging to shift 1 are shown.

Figure 3: Multi-Perspective Modeling, Shift 2.—These ghosts start on the page for �=41 one
simulation step after those shown in Figure 2.

E
n

ti
ty

 A
E

n
ti

ty
 B

ττττ =41 ττττ =42 ττττ =43

��� ��� ���
���

���

��

��� ��� ���
���

���

��

��� ��� ���
���

���
��� ��� ���

���

���
��

ττττ =44

x

��

���
���

���
��� ��� ���

���

���
��� ��� ���

���

���
��� ��� ���

���

���
��� ���

��

�� ��

x

x

Shift = 1

x

x

��

E
n

ti
ty

 A
E

n
ti

ty
 B

ττττ =41 ττττ =42 ττττ =43

��� ��� ���
���

���
��� ��� ���

���

���
��� ��� ���

���

���
��� ��� ���

���

���

ττττ =44

x

���
���

���
��� ��� ���

���

���
��� ��� ���

���

���
��� ��� ���

���

���
��� ���

Shift = 2

�	

�	

x�	 �	

�	

�	

�	 �	

x

x

x

553

geospatial map, and increment their
entities’ fields accordingly. Ghost b2
moves only a short distance, because it is
sampling a future in which entity B meets
entity A and is delayed. Upon completing
its move, it evaluates the fields in its
vicinity. There are no fields near it for
entity A at � = 43, so it computes that it can
complete its move without delay in the
next simulation step. Ghost a2 reaches its
destination, because it is sampling a future
in which A does not meet B. Upon

reaching its destination, it
completes method ma3, advances to
ma4, observes the duration of that
method, and waits for the
designated period (one time step).
Ghost b2 has moved in time and
physical space. Ghost a2 has moved
in time, physical space, process
space, and between perspectives.

Now the ghosts move to the page for �=44. For ghost a2, this is
simply a movement in process space, from method ma4 to ma5.
Ghost b2 completes its movement in the
geospatial map, incrementing the field for Entity
B. It returns to its process map, exiting mb2 and
moving to mb3, where it computes the duration
needed to execute its next action.

This simple example illustrates several crucial
features of the multi-perspective approach to
modeling agent interaction.

• A method’s duration can depend on
interactions, by sampling the interactions in
a different perspective (in this case, the
geospatial map).

• The probabilities that are used to estimate a
method’s duration are developed
dynamically by the agents during the
model’s execution.

• Methods with no interaction contingencies
are efficiently executed directly, based on
recorded durations. In some cases, experience may allow us
to define a closed-form distribution of execution times for a
movement method, thus avoiding the need to send the ghosts
for that method to the geospatial perspective.

In this example, the same agents move through both task space
and physical space. In some cases, different classes of entity move
in different spaces. For example, the entities that move through
task and physical space might be stationary nodes in a social
network. In that perspective, mobile agents could represent
resources such as money or materials that are passed from one
actor to another. Ghosts representing these resource agents would
then drop down into the process graph to supply enabling
resources [1] (not shown in the simplified process graphs of
Figure 2 and Figure 3) and thus allow ghosts of actors to complete
the methods supplied by those resources. In all cases, ghosts move
between perspectives to explore interactions between their
avatars, but multiple species of avatars may be involved.

4. EXAMPLE

We illustrate this approach with an urban
delivery scenario (Figure 4). A bicycle
courier services two small manufacturing
workshops (M1 and M2) and two retailers
(R1 and R2). M1 makes products only for
R2, while M2 makes products for both M1
and M2. The city is very congested, and
sometimes demonstrations and street
rallies prevent the courier from completing
a delivery on time, in which case she is not
paid. Such disruptions are particularly
common in the vicinity of the parliament,

which is close to R2. Her planning
process thus must take into account
not only the supply of products and
the demand from the retailers, but
also her estimate of the likelihood of
heavy traffic in different parts of the
town.

Figure 5 shows a fragment of her
process graph. The three “ Move

from X to Y” methods require her ghosts to swarm in the
geospatial map in order to determine the duration of the method.

She can choose to pick up either a shipment for R1
(which must come from M2), or a shipment for R2
(which can come from either workshop), then
move to the appropriate retailer. A trivial process
graph (not shown) for demonstrators determines
the degree of traffic around the Parliament on a
given day.

We demonstrate the behavior of our
implementation of this system with two different
situations. In one, there is no demonstration, and
the two deliveries are of equal value. In the second,
a demonstration around the parliament impedes
access to R2.

In the first configuration, with no demonstration,
the ghosts representing the courier initially explore
all possible routes (Figure 6, top). The ghosts that
explore the route from M2 to R1 travel a longer
distance than those on the other two paths, leaving

a weaker field. By the seventh avatar cycle (Figure 6, bottom),
most ghosts are favoring the M2-to-R2 route. Figure 8 shows the
total ghost activations in each avatar cycle for each destination.

Figure 7 shows the locations of ghost executions in geospace in
the second configuration. The cluster of ghosts around R2
represents the avatars of the demonstrators. Again, initially
(Figure 7, top), they explore all routes, but ghosts attempting to
deliver to R2 are less successful and leave less reinforcement for
successive ghosts, so that by avatar shift 7, only ghosts exploring
paths from M1 (which can only deliver to R2) are attempting this
path.

Figure 9 shows ghost executions by destination as a function of
avatar cycle. In the initial cycle, successive shifts of ghosts
reinforce the shorter paths, leading to a preference for R2 in spite
of the demonstrators (though the number of R2 ghosts is lower
than in the first scenario, due to the congestion near R2). But this
benefit drops in subsequent avatar cycles, and most ghosts pursue
the M2-R1 route, which the avatar follows.

Figure 4: Urban delivery scenario. Two
shops M1, M2 supply two retailers R1, R2.
Retailer R2 is near the parliament building.

Figure 5: Process Graph for Delivery Example

Figure 6: Ghost execution
locations in geospace as
function of avatar cycle (no
demonstration)

R1

M2M1

R2

���������
��������	

���������
�	������	

��������

�����

�������
����

����������
�	������

����������
�	�����	

����������
�������	

���������
�	�������

 ����

Avatar Cycle 0

Avatar Cycle 7

M1 M2

R1

R2

M1 M2

R1

R2

554

We have exhibited only two extremes in which the
courier’s preference for the two destinations flips.
As the strength of the demonstration varies, we
obtain intermediate results between those of
Figure 8 and Figure 9. In particular, we could find
the point at which the courier’s preference for the
shorter route is balanced by the delay imposed by
the demonstration.

5. DISCUSSION
The simple example in Section 4 illustrates how
the behavior of the courier’s avatar in process
space is affected by the presence or absence of
interactions with other agents (the demonstrators)
in geospace. Without a multiperspective model,
we would have to estimate an explicit distribution
for the duration and success of the movement
methods as a function of level of demonstration, a
laborious task that would be difficult to validate. In our approach,
we simply ask each ghost to step into the geospatial world and see
what happens. The interaction effect is estimated constructively,
by direct simulation in the appropriate domain, and communicated
between perspectives by the movement of ghosts sampling
alternative futures for their avatars. The large sample of futures
accessed by the ghosts [15] increases our
confidence in the robustness of the
emergent effects that they exhibit.

The multi-perspective polyagent approach
to modeling interactive agents draws from
each of the four antecedents outlined in
Section 2, while addressing the
shortcomings we identified there.

Of the four techniques we discussed, the
only one not directly reflected in our
approach is the use of a concurrency
formalism such as CSP, RPN’s, or the Pi
calculus. These techniques have their
place in the meta-analysis of a multi-agent
system [13], but we have not directly
applied them in this work.

The set of topologies, one for each perspective, forms an active
environment. Each perspective actively maintains the fields by
aggregating the increments deposited by each ghost and
attenuating the fields over time to favor the more recent shifts.
Because the environment is partitioned into different perspectives,
and because agent interactions typically involve only a subset of
the perspectives, the complexity of the
environment’s computations is reduced
compared with a single global
environment.

As in models of recursive rationality,
and unlike purely statistical methods,
multi-perspective polyagents maintain
explicit models of the decision-making of
each agent. The successive waves of ghost
agents that build up the probability fields
correspond directly to the levels of
recursion in recursive rationality. The
convergence of the probability fields
offers a quantitative way to determine how
far to extend the recursion (i.e., how many

shifts to send through the system), and the
probabilistic nature of the result is a more realistic
guide to prediction than the single result emerging
from agents’ deterministic recursive estimates of
one another’s decisions.

The probabilistic nature of the ghosts’ decision-
making is at variance with most recursive
reasoning approaches, and more closely resembles
statistical process models such as Markov
models. We share many benefits of these models,
including the relative computational efficiency of
numerical over symbolic reasoning, and the ease
of interfacing with the many machine learning
techniques that are based in probability theory. At
the same time, we offer several advantages over
conventional statistical models. Our model of
individual agent behavior can be mapped readily

onto rational decision models. By tracking individual agents,
rather than simply transitions in the state of the overall system, we
avoid the anomalies that often arise with mean-field methods [22,
23]. And the maintenance of probability fields by ghosts that are
in turn evolved against observations from the domain avoids the
limitations of static transition probabilities endemic to more

traditional statistical approaches.

The approach outlined in this paper will
increase in value as we develop further
perspectives, in addition to geospatial
maps and task networks. Our current
priority is to incorporate reasoning over
various social networks. As suggested
above, the agents that swarm over a social
network may be different from the domain
actors that we have discussed in the
examples in this paper. In a network
representing financial flows, they may
constitute financial resources. In a
communication network, they may
develop a field indicating the likelihood of
communication between two actors at a

given epoch. Both financial resources and coordinating messages
naturally feed into the resource nodes that enable methods in a full
rTÆMS network (not shown in the simplified examples in this
paper, but discussed in [1]).

The modularity achieved by decomposing the environment into
multiple perspectives allows a more general extension, in which
the dynamics of some perspectives are computed, not by

swarming agents, but by other techniques,
such as difference or differential
equations, conventional Markov models,
or BDI mechanisms. In turn, distributions
that can be derived from our swarms can
provide non-swarming probabilistic
reasoners with dynamically-varying,
nonstationary estimates of important
variables that would be difficult to
estimate in any other way.

6. ACKNOWLEDGMENTS
This research was conducted with the
support of the Office of Naval Research
(ONR). The results presented do not

Figure 7: Ghost execution
locations in geospace with
demonstration

Figure 8: Total ghost executions by

destination, no demonstration

Figure 9: Total ghost executions by
destination, with demonstration

Avatar Cycle 0

Avatar Cycle 7

M1 M2

R1

R2

M1 M2

R1

R2

�
����
����
����
����
	����
	����
	����
	����
	����

� 	 �
 � � � �

��
��
���

	�

�

�����������

�

	

�
����
����
����
����
	����
	����
	����
	����
	����

� 	 �
 � � � �

��
��
���

	�

�

�����������

�

	

555

necessarily reflect the opinions of the sponsor.

We are grateful for stimulating interactions with our colleagues
Rainer Hilscher, Bob Bechtel, and Laura Hamel, who helped
develop and implement the algorithms reported in this paper, and
to a careful reviewer.

7. REFERENCES
[1] S. Brueckner, T. Belding, R. Bisson, E. Downs, and H. V. D.

Parunak. Swarming Polyagents Executing Hierarchical Task
Networks. In Proceedings of Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2009), IEEE, 2009.

[2] M. Dorigo and T. Stuetzle. Ant Colony Optimization.
Cambridge, MA, MIT Press, 2004.

[3] A. El Fallah Seghrouchni and S. Haddad. A Recursive Model
for Distributed Planning. In Proceedings of the 2nd
International Conference on Multi-Agent Systems
(ICMAS'96), pages 307-314, AAAI Press, 1996.

[4] J. Ferber and J.-P. Müller. Influences and Reactions: a Model
of Situated Multiagent Systems. In Proceedings of Second
International Conference on Multi-Agent Systems (ICMAS-
96), pages 72-79, AAAI, 1996.

[5] M. A. d. C. Gatti and C. J. P. d. Lucena. A Multi-
Environment Multi-Agent Simulation Framework for Self-
Organizing Systems. In Proceedings of the 10th
International Workshop on Multi-Agent-Based Simulation
(MABS 2009), Springer, 2009.

[6] P. J. Gmytrasiewicz and E. H. Durfee. A Rigorous,
Operational Formalization of Recursive Modeling. In
Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS'95), pages 125-132, 1995.

[7] C. A. R. Hoare. Communicating Sequential Processes.
Englewood Cliffs, NJ, Prentice-Hall, 1985.

[8] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, S.
Zhang, K. Decker, and A. Garvey. The Taems White Paper.
Multi-Agent Systems Lab, University of Massachusetts,
Amherst, MA, 2004.
http://dis.cs.umass.edu/research/taems/white/.

[9] M. Łatek, R. L. Axtell, and B. Kaminski. Bounded rationality
via recursion. In Proceedings of Eighth International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2009), pages 457-464, IFAAMAS, 2009.

[10] T. W. Lucas and J. A. Dinges. The Effect of Battle
Circumstances on Fitting Lanchester Equations to the Battle
of Kursk. Military Operations Research, 9(2):17-30, 2004.

[11] F. Michel. Formalisme, méthodologie et outils pour la
modélisation et la simulation de systèmes multi-agents.
Thesis at Université des Sciences et Techniques du
Languedoc, Department of Informatique, 2004.

[12] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge, UK, Cambridge Univ. Press, 1999.

[13] H. V. D. Parunak. Manufacturing Experience with the
Contract Net. In M. N. Huhns, Editor, Distributed Artificial
Intelligence, pages 285-310. Pitman, London, 1987.

[14] H. V. D. Parunak. Real-Time Agent Characterization and
Prediction. In Proceedings of International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS'07), Industrial Track, pages 1421-1428, ACM,
2007.

[15] H. V. D. Parunak. Generation and Analysis of Multiple
Futures with Swarming Agents. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2010), pages (forthcoming),
IFAAMAS, 2010.

[16] H. V. D. Parunak, T. Belding, R. Bisson, S. Brueckner, E.
Downs, R. Hilscher, and K. Decker. Stigmergic Modeling of
Hierarchical Task Networks. In Proceedings of the Tenth
International Workshop on Multi-Agent-Based Simulation
(MABS 2009, at AAMAS 2009), pages (forthcoming),
Springer, 2009.

[17] H. V. D. Parunak and S. Brueckner. Concurrent Modeling of
Alternative Worlds with Polyagents. In Proceedings of the
Seventh International Workshop on Multi-Agent-Based
Simulation (MABS06, at AAMAS06), Springer, 2006.

[18] H. V. D. Parunak, S. Brueckner, D. Weyns, T. Holvoet, and
P. Valckenaers. E Pluribus Unum: Polyagent and Delegate
MAS Architectures. In Proceedings of Eighth International
Workshop on Multi-Agent-Based Simulation (MABS07),
pages 36-51, Springer, 2007.

[19] H. Raiffa. Decision Analysis: Introductory Lectures on
Choices Under Uncertainty. McGraw-Hill, 1997.

[20] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A.
Brueckner. Performance of Digital Pheromones for
Swarming Vehicle Control. In Proceedings of Fourth
International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 903-910, ACM, 2005.

[21] J. A. Sauter, R. S. Matthews, J. S. Robinson, J. Moody, and
S. P. Riddle. Swarming Unmanned Air and Ground Systems
for Surveillance and Base Protection. In Proceedings of
AIAA Infotech@Aerospace 2009 Conference, AIAA, 2009.

[22] N. M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon.
The importance of being discrete: Life always wins on the
surface. Proc. Natl. Acad. Sci. USA, 97(19 (September
12)):10322-10324, 2000.

[23] W. G. Wilson. Resolving Discrepancies between
Deterministic Population Models and Individual-Based
Simulations. American Naturalist, 151(2):116-134, 1998.

556

